
Proceedings of the 2011 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Obstacle-Based Route Planning for a Steering Constrained Autonomous Vehicle, Rowe et al.

Page 1 of 7

OBSTACLE-BASED ROUTE PLANNING FOR A STEERING CONSTRAINED AUTONOMOUS VEHICLE

Steve Rowe

Charles Jacobus, Ph. D

Douglas Haanpaa

Cybernet Systems Corporation

Ann Arbor, MI

Abstract:

The Team Cybernet vehicle for the 2007 DARPA Urban Challenge
1
 incorporated a route planning

approach that uses sensed obstacles in the environment as the basis for potential turn placement prior to performing

path search. The path search is confined to finding a set of straight-line tangents that connect circles of maximum

curvature that are constructed adjacent to sensed obstacles. This approach is substantially different from

traditional approaches in that the complexity of the search space is not based on the length of the path, but rather

on the number of obstacles in the field. For sparse obstacle fields, this approach allows for very fast plan

generation and results in paths that are guaranteed by construction to not violate steering constraints.

1
 DISCLAIMER: The information contained in this paper does not represent the official policies, either expressed

or implied, of the Defense Advanced Research Projects Agency (DARPA) or the Department of Defense. DARPA

does not guarantee the accuracy or reliability of the information in this paper.

Proceedings of the 2011 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Obstacle-Based Route Planning for a Steering Constrained Autonomous Vehicle, Rowe et al.

Page 2 of 7

Introduction

In the 2007 DARPA Urban Challenge, one of the

qualification criteria was the ability for the

autonomous vehicle to traverse bounded, open

“zones” containing obstacles and parking spaces. A

typical zone mission involved entering the zone from

a roadway, navigating to a parking space within the

zone, pulling into a parking space, backing out of the

parking space, and then proceeding to a defined zone

exit point (see Figure 1).

Figure 1: A Typical Zone Mission. The dotted line

represents a potential vehicle path, where each dot

represents one node in the search tree. The circles

and the lines that link them show a path generated

with our approach.

Our over-arching vehicle design philosophy was to

solve exactly the problems we had to, and not go any

further. Scoring for this event was based on avoiding

obstacles (including lines on parking spaces),

providing a cushion of at least 1 meter around all

other vehicles, reaching the destination checkpoints,

and not pausing for more than 5 seconds
2
. This

guided our choice of solution. We made certain

assumptions about the context in which the planning

was to take place. We assumed that the area would

2
 The complete scoring documentation for the 2007 Urban

Challenge can be found at

http://www.darpa.mil/GRANDCHALLENGE/rules.asp.

be typical of a “real” parking lot, i.e. large (100x50

meters was a working baseline), flat (no obstacles

obscured by the ground), and most importantly that

the nature of the obstacles would be islands that

needed to be driven around, rather than forming a

maze that had to be driven through. We also

assumed that DARPA might add a cul-de-sac to the

zone to test the vehicle’s ability to plan out of local

minima.

Figure 2: Team Cybernet Urban Challenge

Vehicle

This motivated the path planning algorithm

to be described in this paper. The algorithm

constrains the planning process to find paths that

achieve the minimum obstacle avoidance distance

and that do not require turns smaller than the

vehicle’s minimum turning radius to follow. The two

constraints can be used to generate a reduced

planning graph space to be searched as compared to

more traditional discrete grid quantization of the

space, and because the space is not quantized, allow

any possible smooth path that meets the constraints to

be generated.

Previous Work

Before beginning implementation, we reviewed

previous work for route planning of nonholonomic

(steering constrained) vehicles. Fundamental

inspiration for our planner came from Dubins [1] and

Reeds and Shepp [2] who provided clear pictorial

http://www.darpa.mil/GRANDCHALLENGE/rules.asp

Proceedings of the 2011 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Obstacle-Based Route Planning for a Steering Constrained Autonomous Vehicle, Rowe et al.

Page 3 of 7

illustrations of their underlying mathematics
3
.

However, these were concerned with reachability and

optimal path length and did not discuss the problem

of obstacles in the field. Considerable work has been

done to extend this work to address obstacles.

Backer [3] considers obstacles, but in order to restrict

search space (and make the problem complexity

polynomial) he only considers paths inside a

restrictive narrow corridor. Others, including

Esquivel [4], Graf [5], Jiang [6], and Agarwal [7],

perform path planning by first finding the shortest

unrestricted path, and then attempt to fix the path by

applying curvature constraints. This two-step process

is done to guarantee finding the shortest steering-

constrained path. Boissonnat [8] gives a polynomial

time algorithm for constructing a path amid

“moderate” obstacles
4
 and proves that the path is the

shortest feasible path. The restriction to moderate

disjoint obstacles does not allow for one of our key

assumptions, which is the cul-de-sac obstacle. One

can create a moderate obstacle by constructing an

artificial perimeter around an existing non-moderate

obstacle, but in doing so may eliminate the only

feasible path.

One other approach that dispenses with all

of the constraints on obstacle shape is to build a

search tree incrementally with nodes that represent a

maximal left turn, maximal right turn, or straight line

segment over some short time interval. Such a search

tree will provide an arbitrarily close to optimum

solution, but the size of the search space grows as the

length of the path (and not as a function of obstacle

field complexity). The algorithmic performance of

searching this space is highly sensitive to the quality

of the heuristics employed. Unlike the polynomial-

time algorithms cited above, the search tree algorithm

has a runtime complexity that is exponential in path

length.

Our approach

Our planning process builds a graph consisting of

nodes representing arc sections, and edges

representing straight line segments that connect the

3
 We did not use the extensions for reverse driving found in

[2] – Our vehicle only used reverse for special maneuvers,

and did not need to plan reverse paths in general.

4
 The definition of “moderate” obstacles is convex and with

a boundary that is differentiable and made up of line

segments and circular arcs of unit radius.

arcs at tangent points. We then perform traditional

graph search. The process is given below:

Step 1: For the starting configuration,

construct two “navigation circles” of minimum turn

radius, tangent to the starting point. One of the

circles is directed clockwise, the other counter-

clockwise so that the direction of travel is preserved.

Step 2: The same is done for the goal

configuration.

Step 3: Scan the area with our laser range

finder (working range out to about 80 meters).

Step 4: Convert the points detected by the

scanner into line segments.

Step 5: Construct “pad circles” with a radius

of the minimum clearance allowed centered on the

endpoints of each line segment (Figure 3). The

Urban Challenge rules stipulated a 1-meter clearance

between vehicles and all obstacles.

Figure 3: Construction of navigation circles

around the end of an obstacle line segment.

Step 6: For each pad circle, construct 6

navigation circles tangent to the pad circle, and

evenly distributed around it (Figure 4). The number

of navigation circles was chosen empirically as

providing a good balance between providing enough

potential travel paths and expanding the size of the

search space.

Proceedings of the 2011 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Obstacle-Based Route Planning for a Steering Constrained Autonomous Vehicle, Rowe et al.

Page 4 of 7

Figure 4: Completed construction of navigation

circles. Each of the circles shown represents both

a clockwise and counter-clockwise circle.

Step 7: For each vertex of the polygon that

makes up the boundary of the zone, create a

navigation circle sufficiently far inside the zone so

that the nearest points of the circle to the boundary

are <minimum clearance distance> away.

Step 8: For each navigation circle created in

the previous steps, construct arcs by intersecting the

circles with obstacle and perimeter line segments.

Any arcs that lie outside the perimeter are discarded.

In Figure 5, the circle has been divided into two arcs

by cutting it with the obstacle line segment.

Step 9: For each arc, attempt to find a

permissible tangent line segment to every other arc.

A segment is permissible if it does not intersect any

of the pad circles and does not intersect any of the

obstacle or perimeter line segments. Store each of

these tangents in a list associated with the source arc.

Note that the set of arcs and permissible tangents

forms a directed graph (digraph) of potential paths

that the vehicle can follow. Not all of these paths are

legal, however; In Figure 5, a path starting with

segment 1 could not leave the arc on segment 2,

because segment 2’s tangent point lies “upstream” of

segment 1’s tangent point. The path entering on

segment 1 and exiting on segment 3 is allowed. The

path entering on segment 1 and exiting on segment 4

is not allowed, because segment 4 is actually part of a

completely separate arc.

Figure 5: Tangents into and out of a pair of

directed arcs. Note that it is not valid to enter the

arc on segment 1 and exit on 2 or 4.

Step 10: Beginning at one of the arcs (either

clockwise or counter-clockwise) tangent to the start

point, search the digraph created in the previous step.

Then repeat for the other (counter-clockwise or

clockwise) beginning arc. The search succeeds when

the last arc in the path is tangent to the goal point and

the goal point lies “downstream” from the point

where the segment entered the arc. We used a depth-

first search with iterative deepening.

Analysis

The graph construction process (steps 1-9) is

polynomial in the number of obstacle and perimeter

points as follows:

Steps 1,2, 3, and 4 are constant time

operations. Steps 5 and 6 are linear in the number of

line segments (n) detected. Step 7 is linear in the

number of perimeter points (m) that describe the

boundary of the zone. Step 8 is linear in (n+m). Step

9 is quadratic in (n+m). So the graph to search can

be constructed in polynomial time O((n+m)
2
).

The search (step 10) is a traditional tree

search, and so is exponential in search depth (d), with

a branching factor (b) on the order of (n+m). Search

depth is the number of arcs that must be visited to

reach the goal, excluding the starting arc. That is

equivalent to saying that the search depth is the

number of obstacles (or zone perimeter segments)

that must be avoided to reach the goal configuration

from the start configuration.

Proceedings of the 2011 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Obstacle-Based Route Planning for a Steering Constrained Autonomous Vehicle, Rowe et al.

Page 5 of 7

Results

In practice, the number of line segments created from

a scan was less than 30. The number of perimeter

points for the zones varied from 4 to 14. The number

of obstacles that was actually in the way of our goal

configuration was typically around 3. This means

that our entire search process was on the order of

(44)^3 = 85,000 operations. In the National

Qualifying Event (NQE), three zones were navigated.

We successfully traversed these, and did not incur

any “stop and stare” penalties. Our algorithm was

implemented in Java on a 2 GHz dual core Pentium

system.

Figures 6 and 7 show the algorithm in

progress (imagery reconstructed from stored path

telemetry from Cybernet’s second pass through Test

Area B at the 2007 Urban Challenge in Victorville,

California).

Figure 6: Path planned through the starting zone at the 2007 Urban Challenge Test Area B.

Proceedings of the 2011 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Obstacle-Based Route Planning for a Steering Constrained Autonomous Vehicle, Rowe et al.

Page 6 of 7

Figure 7: Paths planned through the

first parking area and out of the zone in

2007 Urban Challenge Test Area B.

Shortcomings

Our approach is not complete. There may be a

feasible path that our planner does not find, because

it only plans along circles that are generated from the

obstacles and perimeter. Because the zones

presented in the Urban Challenge were

uncomplicated and uncluttered, we never failed to

find a solution.

Our approach is not optimal. Although we

select the shortest path of those that we consider,

because we do not generate all possible paths, we

most likely do not generate the shortest path
5
. The

5
 In the absence of obstacles, and when there is a direct

path from start configuration to end configuration that does

not intersect the perimeter of the zone, the planner trivially

generates the CSC curve that Dubins proved was optimal.

This is a special case.

lack of optimality was tolerable because we tend to

generate paths that are not far from optimal.

Our approach still contains an exponential

term in the computational complexity. The search

space of our approach grows exponentially with the

number of turns that must be made to reach the goal.

For the simple zones given in the Urban Challenge, a

depth of 5 was adequate. For more general obstacle

fields, this will not be the case and we will need to

make assumptions about the obstacles so that we can

avail ourselves of one of the polynomial time

algorithms.

Conclusion and Future Work

We have presented our implementation of a model-

based path planner that is able to plan around

obstacles that can be represented as line segments.

The planner generates plans that do not violate

curvature constraints, and can generate plans

Proceedings of the 2011 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Obstacle-Based Route Planning for a Steering Constrained Autonomous Vehicle, Rowe et al.

Page 7 of 7

sufficiently fast to avoid being penalized under the

DARPA “stop-and-stare” rules.

As a future project, we will implement the

Boissonnat algorithm and run it on data sets gathered

during the Urban Challenge to see how it compares to

what we did. This will require that we make some

decisions about how the perimeter of the zone is

treated (it is not necessarily convex). We will also

investigate the conversion of the obstacles that we

encountered into moderate obstacles so that the

algorithm can be applied.

REFERENCES

 [1] L. E. Dubins. On curves of minimal length with a

constraint on average curvature, and with prescribed

initial and terminal positions and tangents. Amer. J.

Math., 79:497–516, 1957.

[2] J. A. Reeds and L. A. Shepp. Optimal paths for a

car that goes both forwards and backwards. Pacific J.

Math., 145(2):367–393, 1990.

[3] J. Backer, D. Kirkpatrick, “A Polynomial-Time

Algorithm for Finding a Bounded-Curvature Path in a

Narrow Corridor”,

[4] W. Esquivel, L. Chiang, “Nonholonomic Path

Planning Among Obstacles Subject to Curvature

Restrictions”, Robotica, vol. 20, 49-58, Jan 2002.

[5] B. Graf, J. Wandosell, C. Schaeffer, “Flexible

Path Planning for Nonholonomic Mobile Robots”,

[6] K. Jiang, L. Seneviratne, “A Shortest Path Based

Path Planning Algorithm for Nonholonomic Mobile

Robots”, in Journal of Intelligent and Robotic

Systems, 24
th

 Ed. (1999), pp. 347-366.

[7] P. K. Agarwal, P. Raghavan, and H. Tamaki.

“Motion planning for a Steering Constrained Robot

Through Moderate Obstacles”. In STOC ’95:

Proceedings of the twenty-seventh annual ACM

symposium on Theory of computing, pages 343–352,

New York, NY, USA, 1995.

[8] J.-D. Boissonnat and S. Lazard. “A polynomial-

time algorithm for computing a shortest path of

bounded curvature amidst moderate obstacles”

(extended abstract). In SCG ’96: Proceedings of the

twelfth annual symposium on Computational

geometry, pages 242–251, New York, NY, USA,

1996. ACM Press.

